| Enseignement secondaire | | | |-------------------------|-------------------|--| | Classes internationales | | | | | Régime anglophone | | | Physique | | | | Programme | | | | 4IEC | | | | Leçons hebdomadaires: 1,5 | | |--|--| | Langue véhiculaire: anglais | | | Nombre minimal de devoirs par trimestre: 1 | | # **Syllabus for Physics 4IEC** ## Theory | | Topic | | Contents | |---|------------------------|---|--| | 1 | Measurements and units | Measuring length and time Volume and density | Know how to work with units in particular S.I. units and their prefixes Writing numbers in scientific notation and significant figures Read Vernier and micrometer Understand meaning zero error Understand period movement and period Define volume and density Units of volume and density for regular and irregular solids Simple calculations using density Compare masses with beam balance Difference between beam balance and digital scales | | 2 | Forces and motion | Speed, velocity and acceleration | Measuring speed Difference between speed and velocity Define acceleration Understand deceleration Motion graphs: distance-time graph, speed-time graph | | | · ac i Eilianice | et de la Jedhesse | | |---|---------------------|--|---| | | | Forces in balance Force, mass and acceleration Friction and braking | Meaning of slope (gradient) as rate of change of speed in time Recognize difference between uniform and non-uniform movement from velocity- time graphs Interpret area under speed-time line as distance travelled Acceleration g of free fall (omit upward movement) Free body diagram: isolate object to identify forces acting on it Measuring force Different types of forces and arrow representation Newton's first law of motion Meaning of terminal velocity Newton's second law: notion of inertia, resulting force in one direction Different effects of forces Stopping distance Friction: how can it be useful, how can it be reduced | | | | Force, weight and gravity | Define difference between weight and masChanging weight, fixed mass | | | | Action and reaction | Newton's third lawPropulsion of rockets | | 3 | Forces and pressure | Forces and turning effects Stretching and compressing Pressure | Define moment of a force Principle of moments Condition of equilibrium: forces and moments Centre of mass and stability Hooke's law and meaning of spring constant Plot force versus load and meaning of slope Pressure between solids Pressure in liquids (deriving formula for hydrostatic pressure optional) Hydraulic systems Pressure from the air Atmospheric pressure Measuring pressure using a manometer | | | | et de la Jeuliesse | | |---|-----------------|---|---| | 4 | Work and energy | Work and energy Transforming energy | Define work and energy Different forms of energy Conservation of energy Understand difference between work done and energy transformed | | | | Calculating potential and kinetic energies | Sankey diagramsSolve simple problems | | | | Energy for electricity and energy resources | Define efficiency Link between efficiency and power Optional: personal research | | 5 | Thermal physics | Temperature | Understand notion of temperature Understand difference between heat and thermal energy Absolute zero and kelvin unit | | | | Expanding solids and liquids | Conversion kelvin and degree Celsius Understand why solids and liquids expand when heated Effects and uses of thermal expansion Volume change when water freezes and its effects | | | | Thermal conduction | Factors affecting thermal conduction Good and poor thermal conductors Uses of insulating materials | | | | Thermal convection | Examples of convection currentsExamples and uses of convection currents | | | | Thermal radiation | Nature of thermal radiation Examples of emitters, reflectors and absorbers Greenhouse effect, solar panel and vacuum flask | ### **General skills:** - 1. Use of command terms - 2. Summarise key points in a text - 3. Use of tables - 4. Writing a method - 5. Charts and graphs (see chemistry and physics) - o Present information as bar charts or scatter graphs - Understanding direct and inverse proportion - Identify relationships using scatter graphs (direct proportion and linear relationship; significance of intercept) - o Analyse and describe trends of a graph - 6. Modelling in science: how to use models in science and testing them - 7. Produce and present a presentation - 8. Calculating with simple formulae : y = a times x, reciprocals, ratios, percentages, powers of ten - 9. Measuring angles - 10. Understand accuracy and precision - 11. Understand random and systematic errors - 12. Rounding numbers - 13. Know the S.I. units and their multiples of the physical quantities introduced in the different chapters. - 14. Make approximations and estimates - 15. Understand notion of fair testing ### **Practical Work Suggestions** The practical activities are an integral part of the course. | | <u>Topic</u> | Contents | | |-----|---------------------|---|--| | 1 | Measurements and | - Practice within the context of different labs | | | | units | | | | 2 | Forces and motion | - Find speed from distance / time measurements | | | | | - Hooke's law for spring and elastic band | | | | | - Frictional forces | | | | | - Inertia | | | 3 | Forces and pressure | - Investigate factors influencing upthrust | | | 4,5 | Work and energy | - Renewable energies | | | | | - Compare heat loss of different cups filled with hot | | | | | drink (fair test notion) | |